Горелка газомазутная ГМ-2.5

Горелки газомазутные ГМ-2,5 предназначены для раздельного сжигания природного газа и топочного мазута и используются с паровыми газомазутными котлами типа ДЕ-ГМ, а также с водогрейными котлами, разработанными на базе паровых котлов ДЕ-ГМ. Допускается кратковременное совместное сжигание газа и мазута во время перехода с одного вида топлива на другой.

Горелки ГМ-2,5 выпускаются правого направления вращения воздуха. Правым считается направление вращения воздуха по часовой стрелке, если смотреть на горелку с фронта котла, левым – против движения часовой стрелки.

Основными элементами горелки ГМ-2,5 являются: паромеханическая форсунка, газовая часть, лопаточный завихритель воздуха, опора. Распыливание жидкого топлива в горелке осуществляется паромеханической быстросъёмной форсункой.

Паромеханическая форсунка состоит из: топливного ствола, паровой трубы, топливного завихрителя, парового завихрителя, распределительной шайбы, накидной гайки, корпуса, фланца, скобы и винта. Топливный ствол и паровая труба крепятся к корпусу, при этом топливный ствол располагается концентрично внутри паровой трубы.

Жидкое топливо по топливному штуцеру и пар по паровому штуцеру, подаются в топливный и паровой каналы фланца и дальше в одноименные каналы в корпусе. Из корпуса жидкое топливо попадает в топливный ствол, а пар в кольцевой канал между наружной поверхностью топливного ствола и внутренней поверхностью паровой трубы.

Топливный завихритель, паровой завихритель, распределительная шайба и накидная гайка образуют распыливающую головку форсунки.

В распыливающей головке, которую образуют топливный завихритель, паровой завихритель, распределительная шайба и накидная гайка, жидкое топливо через отверстия распределительной шайбы поступает в кольцевой канал топливного завихрителя и далее, по тангенциальным каналам, попадает в камеру завихрения, приобретая поступательно-вращательное движение. Выходя из сопла топливного завихрителя в виде пленки, жидкое топливо распадается на мелкие капли, образуя конус распыла.

Паровой завихритель имеет тангенциальные каналы для закручивания парового потока, камеру завихрения и выходное отверстие.

Пар, выходя закрученным потоком рядом с соплом топливного завихрителя, участвует в процессе распыливания топлива. Направление закрутки топлива и пара предусмотрено в одну сторону.

Характеристики Горелки ГМ-2.5	Значение
Номин. тепловая мощность, МВт (Гкал/ч)	2,9(2,5)
Коэф. рабоч. регулир. по теплоте, мощн.	5
Номин. давл. мазута перед форсункой, МПа (кгс/см^2)	1,8(18)
Номин. давл. газа перед горелкой, кПа (кгс/см^2)	25(2500)
Номин. расход мазута, кг/ч	258
Номин. расход газа, кг/ч	295
Содержание окиси углерода (СО), %, газ	0.05
Содержание окиси углерода (СО), %, мазут	0.05
Содержание оксидов Азота (Nox) мг/м3, газ	210
Содержание оксидов Азота (Nox) мг/м3, мазут	300
Применяемость к котлам	ДЕ-4 ГМО.,ДЕВ-4 ГМО
Габариты (LxBxH), мм	720x685x685
Масса, кг	95
Срок изготовления, дней	15

Горелка газомазутная ГМ-4.5

Горелки газомазутные ГМ-4,5 предназначены для раздельного сжигания природного газа и топочного мазута и используются с паровыми газомазутными котлами типа ДЕ-ГМ, а также с водогрейными котлами, разработанными на базе паровых котлов ДЕ-ГМ. Допускается кратковременное совместное сжигание газа и мазута во время перехода с одного вида топлива на другой.

Горелки ГМ-4,5 выпускаются правого направления вращения воздуха (в случае необходимости есть возможность изготовления горелки левого направления вращения воздуха). Правым считается направление вращения воздуха по часовой стрелке, если смотреть на горелку с фронта котла, левым — против движения часовой стрелки. Горелки ГМ-4,5 по способу организации аэродинамики факела относятся к вихревым, по количеству воздушных потоков - к однопоточным.

Основными элементами горелки ГМ-4,5 являются: паромеханическая форсунка, газовая часть, лопаточный завихритель воздуха, опора.

Распыливание жидкого топлива в горелке осуществляется паромеханической быстросъёмной форсункой.

Паромеханическая форсунка состоит из топливного ствола, паровой трубы, топливного завихрителя, парового завихрителя, распределительной шайбы, накидной гайки, корпуса, фланца, скобы и винта. Топливный ствол и паровая труба крепятся к корпусу, при этом топливный ствол располагается концентрично внутри паровой трубы.

Жидкое топливо по топливному штуцеру, и пар по паровому штуцеру, подаются в топливный и паровой каналы фланца и дальше в одноименные каналы в корпусе. Из корпуса жидкое топливо попадает в топливный ствол, а пар в кольцевой канал между наружной поверхностью топливного ствола и внутренней поверхностью паровой трубы.

Топливный завихритель, паровой завихритель, распределительная шайба и накидная гайка образуют распыливающую головку форсунки.

В распыливающей головке, которую образуют топливный завихритель, паровой завихритель, распределительная шайба и накидная гайка жидкое топливо через отверстия распределительной шайбы поступает в кольцевой канал топливного завихрителя и далее, по тангенциальным каналам, попадает в камеру завихрения, приобретая поступательно-вращательное движение. Выходя из сопла топливного завихрителя в виде пленки, жидкое топливо распадается на мелкие капли, образуя конус распыла.

Паровой завихритель имеет тангенциальные каналы для закручивания парового потока, камеру завихрения и выходное отверстие.

Пар, выходя закрученным потоком рядом с соплом топливного завихрителя, участвует в процессе распыливания топлива.

Направление закрутки топлива и пара предусмотрено в одну сторону.

Направление закрутки топлива и пара противоположно закрутке воздуха.

Характеристики Горелки ГМ-4.5	Значение
Номин. тепловая мощность, МВт (Гкал/ч)	5,2(4,5)
Коэф. рабоч. регулир. по теплоте, мощн.	5
Номин. давл. мазута перед форсункой, МПа (кгс/см^2)	1,8(18)
Номин. давл. газа перед горелкой, кПа (кгс/см^2)	25(2500)
Номин. расход мазута, кг/ч	465
Номин. расход газа, кг/ч	532
Содержание окиси углерода (СО), %, газ	0.05
Содержание окиси углерода (СО), %, мазут	0.05
Содержание оксидов Азота (Nox) мг/м3, газ	210
Содержание оксидов Азота (Nox) мг/м3, мазут	350
Применяемость к котлам	ДЕ-6,5 ГМО.,ДЕВ-6,5 ГМО
Габариты (LxBxH), мм	730x770x770
Масса, кг	120

Горелка газомазутная ГМ-7

Горелки газомазутные ГМ-7,0 Бийского Котельного Завода «Генерация» предназначены для раздельного сжигания природного газа и топочного мазута и используются с паровыми газомазутными котлами типа ДЕ-ГМ, а также с водогрейными котлами, разработанными на базе паровых котлов ДЕ-ГМ. Допускается кратковременное совместное сжигание газа и мазута во время перехода с одного вида топлива на другой.

Горелки ГМ-7,0 выпускаются правого направления вращения воздуха (в случае необходимости есть возможность изготовления горелки левого направления вращения воздуха). Правым считается направление вращения воздуха по часовой стрелке, если смотреть на горелку с фронта котла, левым – против движения часовой стрелки.

Горелки ГМ-7,0 по способу организации аэродинамики факела относятся к вихревым, по количеству воздушных потоков - к однопоточным.

Основными элементами горелки ГМ-7,0 являются: паромеханическая форсунка, газовая часть, лопаточный завихритель воздуха, опора.

Распыливание жидкого топлива в горелке осуществляется паромеханической быстросъёмной форсункой.

Паромеханическая форсунка состоит из топливного ствола, паровой трубы, топливного завихрителя, парового завихрителя, распределительной шайбы, накидной гайки, корпуса, фланца, скобы и винта. Топливный ствол и паровая труба крепятся к корпусу, при этом топливный ствол располагается концентрично внутри паровой трубы.

Жидкое топливо по топливному штуцеру и пар по паровому штуцеру, подаются в топливный и паровой каналы фланца и дальше в одноименные каналы в корпусе. Из корпуса жидкое топливо попадает в топливный ствол, а пар в кольцевой канал между наружной поверхностью топливного ствола и внутренней поверхностью паровой трубы.

Топливный завихритель, паровой завихритель, распределительная шайба и накидная гайка образуют распыливающую головку форсунки.

Характеристики Горелки ГМ-7	Значение
Габариты (LxBxH), мм	800x885x885
Номин. тепловая мощность, МВт (Гкал/ч)	8,14(7)
Коэф. рабоч. регулир. по теплоте, мощн.	5
Номин. давл. мазута перед форсункой, МПа (кгс/см²)	1,8(18)
Номин. давл. газа перед горелкой, кПа (кгс/см²)	25(2500)
Номин. расход мазута, кг/ч	723
Номин. расход газа, кг/ч	827
Содержание окиси углерода (СО), %, газ	0.05
Содержание окиси углерода (СО), %, мазут	0.05
Содержание оксидов Азота (Nox) мг/м3, газ	210
Содержание оксидов Азота (Nox) мг/м3, мазут	350
Применяемость к котлам	ДЕ-10 ГМО., ДЕВ-10 ГМО
Габариты (LxBxH), мм	800x885x885
Масса, кг	145

Горелка газомазутная ГМ-10

Горелки газомазутные ГМ-10 Бийского Котельного Завода «Генерация» предназначены для раздельного сжигания природного газа и топочного мазута и используются с паровыми газомазутными котлами типа ДЕ-ГМ, а также с водогрейными котлами, разработанными на базе паровых котлов ДЕ-ГМ. Допускается кратковременное совместное сжигание газа и мазута во время перехода с одного вида топлива на другой.

Горелки ГМ-10 выпускаются правого и левого направления вращения воздуха. Правым считается направление вращения воздуха по часовой стрелке, если смотреть на горелку с фронта котла, левым – против движения часовой стрелки.

Горелки ГМ-10 по способу организации аэродинамики факела относятся к прямоточно-вихревые, по количеству воздушных потоков - к двухпоточным.

Основными элементами горелки ГМ-10 являются: паромеханическая форсунка, газовая часть, лопаточный завихритель воздуха, опора.

Распыливание жидкого топлива в горелке осуществляется паромеханической быстросъёмной форсункой.

Паромеханическая форсунка состоит из топливного ствола, паровой трубы, топливного завихрителя, парового завихрителя, распределительной шайбы, накидной гайки, корпуса, фланца, скобы и винта. Топливный ствол и паровая труба крепятся к корпусу, при этом топливный ствол располагается концентрично внутри паровой трубы.

Жидкое топливо по топливному штуцеру, и пар по паровому штуцеру, подаются в топливный и паровой каналы фланца и дальше в одноименные каналы в корпусе. Из корпуса жидкое топливо попадает в топливный ствол, а пар в кольцевой канал между наружной поверхностью топливного ствола и внутренней поверхностью паровой трубы.

Топливный завихритель, паровой завихритель, распределительная шайба и накидная гайка образуют распыливающую головку форсунки.

В распыливающей головке, которую образуют топливный завихритель, паровой завихритель, распределительная шайба и накидная гайка жидкое топливо через отверстия распределительной шайбы поступает в кольцевой канал топливного завихрителя и далее, по тангенциальным каналам, попадает в камеру завихрения, приобретая поступательно-вращательное движение. Выходя из сопла топливного завихрителя в виде пленки, жидкое топливо распадается на мелкие капли, образуя конус распыла.

Паровой завихритель имеет тангенциальные каналы для закручивания парового потока, камеру завихрения и выходное отверстие.

Пар, выходя закрученным потоком рядом с соплом топливного завихрителя, участвует в процессе распыливания топлива.

Направление закрутки топлива и пара предусмотрено в одну сторону.

Направление закрутки топлива и пара противоположно закрутке воздуха.

Характеристики Горелки ГМ-10	Значение
Номин. тепловая мощность, МВт (Гкал/ч)	11,63(10)
Коэф. рабоч. регулир. по теплоте, мощн.	5
Номин. давл. мазута перед форсункой, МПа (кгс/см²)	1,8(18)
Номин. давл. газа перед горелкой, кПа (кгс/см²)	25(2500)
Номин. расход мазута, кг/ч	1032
Номин. расход газа, кг/ч	1182
Содержание окиси углерода (СО), %, газ	0.05
Содержание окиси углерода (СО), %, мазут	0.05
Содержание оксидов Азота (Nox) мг/м3, газ	210
Содержание оксидов Азота (Nox) мг/м3, мазут	350
Применяемость к котлам	ДЕ-16 ГМО., ДЕВ-16 ГМО
Габариты (LxBxH), мм	805x885x885
Масса, кг	145

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395) 279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Киргизия (996)312-96-26-47

Казахстан (772)734-952-31

Таджикистан (992)427-82-92-69

Эл. почта bgk@nt-rt.ru || Сайт: http://bikzg.nt-rt.ru